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ABSTRACT

Canonical numbering systems are used to relateefglément vertices and elements to edges
and faces in those elements. A numbering systemossed that treats all the major topological
element types used in practice. Also described setaof functions that provide common
evaluations of the canonical numbering data. Examfrom various parts of the finite-element
analysis process are used to show the usefulnet®e®é functions. The differences between
various numbering systems used in commercial as€lareh codes and our numbering system
are described. The implementation of these funstismavailable as open-source software and
can be called directly from the C, C++, and Forlearguages.

1. INTRODUCTION

Scientific computing has been profoundly changedsbftware components, most clearly in
areas such as numerical linear algebra solvers (Bpland mesh partitioning [METO08], but
elsewhere as well. The shift to component-basedooting has enabled the rapid incorporation
of the latest technology into applications (i.evertical” integration) and has simplified
exploration of available components for a giverhtedogy to allow selection of the one most
suitable for the application (i.e., “horizontal't@égration). Following this trend, components are
now being developed for mesh generation and otheshrbased enabling technologies
[ITAO8,TAUO4]. We expect similar gains in functiditg and sophistication of applications
based on these new mesh-based components.

Applications and mesh-based components using meshnadust have a common understanding
of the mesh in order to work correctly. For exampte ordering of vertices in an element is
important in uniquely describing that element. Fggd shows two possible numberings of
vertices in a tetrahedron.

If the element volume is defined in an applicat@snthe vector triple product,

v = (020203



then one of the numberings will generate a positdeme for this element, while the other will
result in a negative volume. Applications must @itise a common numbering system when
evaluating the mesh or at least know how to traedietween various numbering systems if
several are used. Although there is wide agreeraenthe basic element types in the finite
element “zoo” (e.g., nodes, triangles, hexahedd#ferences in the numbering definitions
present barriers to interoperability between congpds using these data. Enumerating the
numbering differences between common numberingeByst as well as facilitating the
translation between the various systems, would avgrinteroperability and contribute to the
deployment of mesh-based components.

This paper defines a canonical numbering systemfeyresl to as MBCN (MoaB Canonical
Numbering), that is comprehensive, covering mosiikn element types used in practice, while
also being extensible to new element types. Comwneei functions are described that depend on,
but are not strictly part of, a minimal numberingfidition. Such functions often are
implemented in mesh-based applications, but inre fthat usually does not fully support a
complete set of element types. A functional irsteef for accessing the numbering definition is
described, along with an implementation that canabeessed from C, C++, and Fortran
applications. Mappings between the numbering sysireposed here and several other popular
numbering systems, including those used in PATRRNTO08], Exodusll [SCH92], and Ansys
[ANS98], are also described. These functions haenlreleased under the open source LGPL
license and are available for download from the {#¢GA08].
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Figure 1: Two different numberings for a tetrahedron.

The Interoperable Tools for Advanced Petascale imons (ITAPS) project develops
interfaces to geometry, mesh, and field data andces based on these interfaces [ITA08]. The
ITAPS mesh interface, referred to as iMesh, ussst af entity types similar, but not identical, to
those defined in MBCN. The Mesh-Oriented datABlds@ary (MOAB) implements the iMesh
interface specification and is tuned for minimalmaey use first and execution time second
[TAUO4]. The entity types treated by both MOAB aMdBCN are identical. ITAPS references
the work described in this paper for its canonimaibering, with MBCN'’s set of entity types
being a superset of those defined by iMesh. Bec&MBCN defines entities not treated by
iMesh, and because of other small differences,(MBCN'’s defining an “entity set” as an entity
type and its handling of higher-order nodes in gatc elements), MBCN is reported separately
from iMesh.

In Section 2 we describe the canonical nhumberirgiesy used in MBCN. In Section 3, we
describe some higher-level functions for evaluatagonical numbering and show how such
functions are often used implicitly in codes thatlaate the mesh. The implementation of
MBCN minimizes the actual data used to describentimebering system, thereby minimizing the



chances of consistency errors and simplifying theusion of different element types; this
implementation is described in Section 4. Also desd are MBCN functions for translation
between various systems using permutation vec®rfunctional interface specification for
MBCN is given in Appendix A. The MBCN numbering s is related to other popular
numbering systems, including those used in AnsykZandia’s Exodusll format, in Appendix
B.

2. MBCN NUMBERING SYSTEM DEFINITION

We divide the definition of our canonical numbergygstem into several logical parts. First, the
types of elements supported by the system are eatede Next, the numbering of vertices,
edges, and faces in each element is defined. Tthiedprocess for numbering so-called higher-
order vertices in quadratic elements is defined.

2.1. MBCN ELEMENT ZOO

The finite-element zoo treated by MBCN is shownRAgure 2. This set includes all of the
commonly used elements in finite-element analysigluding triangles, quadrilaterals,
tetrahedra, and hexahedra. The set also includae sb the less common elements, including
wedges (also referred to as triangular prisms) gyrdmids. Because these elements are less
common, the numbering systems used to describe din vary. By including them in our
system, we hope to popularize a numbering convemtiothese elements. Some special-purpose
elements also are included in our system (e.g.,"khde” element [MOAQS8]), for the same
reasons. Additionally, our enumeration of elememies includes some types not traditionally
found in the finite element zoo, including polyg@olyhedron, and entity set. We have included
these types in the enumeration for conveniencengdhat iteration is often done over all
element types, not only those that have a definechbering (for more information, see
[MOAOS]).
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Figure 2: Vertex numbering for finite-element zoo treated in MBCN.

Besides containing an enumeration of the typesiddfthere, MBCN has functions that return a
string name for a given type and the type giverrimgs name. Full specifications for these
functions are given in Appendix A.

2.2. VERTEX, EDGE, AND FACE NUMBERING

A complete vertex numbering definition for theseneénts is shown in Figure 2. Edge and face
numberings are shown in Figure 3 and Figure 4 edsmely. One point to note is that all vertex,
edge, and face numbers within each element arégoonis and begin with zero.
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Figure 3: Edge numbering for finite-element zoo treated in MBCN.

Faces and edges bounding elements of higher tapalatimension are referred to as “facets” of
those elements; vertices can also be consideredsfaathough they are not strictly included in
that definition in the topology literature. MBCN$&unctions that return the number of facets of
each dimension d < D, for elements of dimensioMBCN also has functionality to convert the

base of the numbering system from zero to one.Appendix A for details.
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Figure 4: Face numbering for finite-element zoo treated in MBCN.

2.3. HIGHER-ORDER ELEMENTS

In its most general form, the finite element metlvad use a variety of shape function types of
arbitrary order. In practice, however, the majoat finite-element analysis codes, especially in
the solid mechanics community, use linear or quadshape functions. From the viewpoint of
the mesh, quadratic shape functions are suppoytadding degrees of freedom to some or all of
the lower-dimensional facets and to the elemeetfjtene for every order beyond linear. The
two most common methods for representing theseedsgof freedom are as attributes assigned
directly to those facets or as “higher-order” va¥ associated indirectly with the facets they
resolve. The former representation is more genefldwing each facet to have an arbitrary
number of degrees of freedom. It is also morelgdsowever, in terms of memory, since lower-
dimensional facets must be explicitly represenB8A97]. In cases where all facets of a given
topological dimension have the same number of dsgoé freedom, the second method is easily
represented by concatenating higher-order vertwélse list of corner vertices. This method is
used by the majority of numbering systems revieindtis paper (see Appendix B).

In many cases, some but not all lower dimensioagesolved by extra degrees of freedom. For
example, the widely used 10-vertex tetrahedronnmasedge as well as corner vertices, but not
mid-face vertices. If a flabq is used to specify whether facets of dimensl@re resolved with
higher-order vertices, amg is the number of facets of dimensidnthen the total number of
vertices in an element of dimensibnis given by

N = ZD:hd Ny
d=0

(we assumey is the number of corner verticdg; is always unity). For example, for a 10-vertex
tetrahedron with corner and mid-edge vertites, [1, 1, 0, O]nis [4, 6, 4, 1], andN =4 + 6 =

“By definition, the MBEntityType enumeration beginih the value of zero for MBVERTEX and ends wiltet
value MBMAXTYPE value.



10. Similarly, a hexahedron with higher-order ita$ resolving the edges and the element itself
would haveh = [1, 1, 0, 1],n = [8, 12, 6, 1] andN = 21. One subtle aspect of this numbering
approach is that the index of a higher-order verteay have different values depending on
which facet dimensions of an element are resolviglal vgher-order vertices. For example, the
index of the vertex resolving the interior of thexahedron would change from 20 to 26 Were
changed to [1, 1, 1, 1] (assuming a zero-based atinghsystem). Thus, a “canonical” ordering
for higher-order vertices depends on which facebetisions are resolved in a higher-order
element.

All possible combinations ofiy for a given dimension, along with the topology afgiven
element type, can be used to enumerate the possialenumber of vertices for that element. If
these numbers are unique for a given element,lfean be inferred given the element type and
the total number of (corner and higher-order) eegN. Going the other way)y andN can be
used to find the index and dimension of facet ne=mbby verted. Both operations are common
in meshing applications.

Functions performing these types of evaluationglaseribed further in Appendix A.

3. FUNCTION INTERFACE TO CANONICAL NUMBERING DATA

MBCN is implemented as a C++ class and does nardepn the rest of MOAB; therefore, it
can be incorporated as-is into applications if @esiBuilding MBCN requires files generated
from the Automake-based MOAB build process, althotigs would be easy to adapt to an
application's build system. Most functions in MB@M implemented as inline functions, with
basic numbering data stored in fixed-size statiays: Thus, calls to MBCN are efficient in run-
time.

MBCN also provides wrapper functions that can bkeddrom C and Fortran; these functions
use a slightly different syntax from that of the BB class functions. Wrapper functions have
“MBCN_" prepended to the function name. These fioms are all declared with void type;
those corresponding to MBCN class functions thi@atrrenon-void values have an extra
argument of that type in their C/Fortran counterp&refault arguments always appear in the
argument list of wrapper functions. Moreover, &+ data structures not found in C/Fortran
(e.g., Standard Template Library vectors std::vectg are passed as an array and a size in the
wrapper functions. Other details of the C-Fortrgerface can be found in the MBCN header
file.

There are basic functions needed to access theldaten in Figures 2— 4; these functions are
described in the following subsection. Conveniegicetions can also be defined, which depend
on the basic functions but provide higher-levelctionality (e.g., adjacency evaluation) in terms
of canonical numbering data. These functions aserd®ed following the basic functions. In
both cases, only a qualitative description is gikere, with more complete descriptions
provided in Appendix A.

3.1. BASIC CANONICAL NUMBERING FUNCTIONS

The following functions give information about taetity types defined by MBCN.



MBEnNtityType: Denotes entity types. Arguments of this type apuinto most of the
other MBCN functions. The types used by MBCN aresthshown in Figure 2, along
with MBENTITYSET and MBMAXTYPE.

EntityTypeName(t): Returns a constant character string represertisgame of typée

Dimension(t): Returns the topological dimension of this entityety

The following functions return information aboutetmtrinsic numbering data for entities, that is,
the numbering data that cannot be derived fromrathmbering information for an entity:

VerticesPer Entity(t): The number of corner vertices for entities of type

NumSubEntities(t, d): The number of bounding facets of dimensuobrior entities of
typet.

SubEntityType(t, d): The type of bounding facet of dimensidrfor entities of typd;
for d I= 2, the returned type will always be thensa(MBEDGE for d = 1, MBVERTEX
for d = 0, and t for d = Dimension(t)); for d =shme entity types (e.g., MBPRISM) have
facets of more than one type.

SubEntityConn(t, d, n, ...): The connectivity of th@™ facet of dimension bounding an
entity of typet. Connectivity is returned in terms of the cornertex numbers of the
entity of typet.

These functions are sufficient for describing thtitees shown in Figures 2-4. Existing
applications usually have some version of thisnmiation already implemented, at least for the
types of elements they currently use. New appbeaticould use these functions instead of
implementing them themselves.

3.2. HIGHER-LEVEL CONVENIENCE FUNCTIONS

The fundamental data in a canonical numbering digfinis accessed by using the functions
described above. In addition to those data and tifumg; however, certain higher-level
functionality that depends on canonical numberimgaliso commonly implemented in mesh-
based applications. MBCN provides some of thesetioms, which apply to all treated element
types, in contrast to the more limited implemeotadi commonly found in applications.
Examples of such functionality are discussed is $eiction.

Facet Adjacencies

Many codes represent elements by using only ary afr¢éhe vertices defining the element, but

need information about facets of these elements.ekample, a code might need to find the

vertices common to two faces in the element. ThpeéahtSides function evaluates adjacencies
based on canonical numbering data, returning thdtsein terms of those same data.

int AdjacentSides(const MBEntityType t, const int *i, const int numi,
const int source_dim const int target_dim

std::vector<int> & ndex_list,



const int operation_type = MBCN: : | NTERSECT)

Given an entity type, a vector of facet indices) (of specified dimension (source_dim), and the
target dimension, this function returns the indioetacets of that target dimension shared by the
source facets. If operation_type is specified ag@NNinstead of INTERSECT, any target facets

adjacent to the source facets are included in thput list. Note that this function can traverse

upward or downward in dimension; for example, thisction can be used to find the faces

sharing a given edge or the vertices common tofawes.

The following is the equivalent function in the Gfffan wrapper.
voi d MBCN_Adj acentSides(int t, int *i, int numi,

int source_dim int target_dim
int *index_list, int index_list_size,

int operation_type, int *numsides_returned)

Example usages of the AdjacentSides function, usedrious places in MOAB, include the
following.

* Find the vertex indices defining a specified faafein element (some mesh formats, e.g.,
Ansys, can specify element facets in terms of teetices defining those facets).

Adj acent Si des(t, &side_no, 1, side_dim 0, side_vertices)

* Find all edges shared by the faces in face_list.

Adj acent Si des(t, face_list, numfaces, 2, 1, commopn_edges)

» Find all faces sharing the apex node of a pyramid.

Adj acent Si des(MBPYRAM D, & nt(4), 1, 0, 2, sharing_faces, MBCN :UN ON)

Translation of Facet Connectivity to Facet Index

Many mesh generation codes represent boundary taomsliby using the geometric model
entities, while the mesh storage format calls fouriary condition data in terms of “sides”, or
local facet indices in an element. For example Bkedus [SCH92] format stores Neumann-type
boundary conditions as “sidesets,” which are aectilbn of pairs of elements and facet numbers.
In these cases the code must find the facet nugiben that facet and the element it bounds. For
this purpose, the following function is providedNtBCN:

int SideNunber(const X *parent_conn, const MBEntityType parent_type,
const X *facet_conn, const int facet_numyverts,

const int facet_dim &side_nunber, int &sense, int &offset)



This function takes connectivity in generic form;the actual implementation, several versions
of this function are overloaded with the same name vary according to the data type of the
arguments. In addition to returning the facet numlige sense of the facet (i.e., the normal
indicated by the order of vertices in facet_conmpared to that of the facet in the canonical
ordering in parent_conn) and the offset of thetstérfacet conn compared to that of the
canonical ordering data are also returned. Retgritivese items incurs no cost inside the
implementation because the items are computedrasfdading the facet number.

For example, the facet number of a quadrilaterdh wertices in face_connect in a hexahedron
whose vertices are in hex_connect can be founaling the following.

Si deNunber (hex_connect, MBHEX, face_connect, 4, 2, side, sense, offset)

Higher-Order Vertex Indexing

As discussed in Section 2.3, a common operatitm fisd the facet resolving a vertex, given the
element type and the total number of vertices;dpiration is performed by the function

voi d HONodePar ent (const MBEntityType el em type,
const int numyverts, const int ho_vert index,

int &arent_dim int &parent_index)

where the dimension and index of the resolved faeeteturned in the parent_dim and
parent_index arguments, respectively.

Permutations and Relation to Other Numbering Systems

In order to maximize compatibility with other cogdéise canonical numbering system defined by
MBCN corresponds to the PATRAN numbering system TB&] in most cases. However,
MBCN supports several element types not supportgdPBTRAN; in those cases, if a
corresponding element type is available in Exodi®0H92], that definition is used. Otherwise,
MBCN defines its own numbering.

Besides being useful for implementation of varidusctionality within a mesh application,
canonical numbering information is useful for tdatieg mesh between various mesh storage
formats. Using the correct ordering for the origimg and destination formats is critical for
obtaining valid mesh definitions on each side @& translation. Canonical numbering can be
translated by using a vector to permute the data /MBCN’s numbering system to the target
system, or vice versa. MBCN allows applicationgléfine permutation vectors based on entity
type, facet dimension, and number of entities af thmension and to permute index lists based
on those vectors. The following functions are pdewd for this purpose.

» setPermutation(t, d, ilist, n, f), resetPermutation(t, d): sets and resets the permutation
vector for entities of typg facet dimensionl, and number of sub facats to the vector
in ilist. If f is non zero,ilist contains the reverse-permutation vectoiis provided to
allow setting vertex numbering for higher-ordernedmts, where the number of vertices
depends on the particular kind of element (seei@e2t3).



e permuteThis(t, d, conn, ni, ne), revPermuteThis(t, d, ilist, ni, ne): for entities of type
t, dimensiond, number of indices per facei, and number of entitiese, permutes
(converts from MOAB to application-specified orden) reverse-permutes (converts to
MOAB order from application-specified order) in-péathe indices inist.

The data in ilist can be either canonical numbeteinlists or application-dependent entity
handles. For the latter case, overloaded versidnthe® permuteThis and revPermuteThis
functions are available for integer, unsigned iatetpng integer, and void* data.

It can be challenging to track down the numberiygfesms used in various finite-element codes,
commercial or otherwise, and even more challentpnignd differences between these systems.
For reference, we describe the numbering systeed msseveral well-known codes, including
PATRAN, in Appendix B of this paper.

4. COMPLEXITY AND EFFICIENCY

For practical use, translation of numbering museffieient in terms of both memory and run-
time. The two main data arrays, for downward apd/ard connectivity numbering, require
about 10 kB and 60 kB, respectively. This amouhtm@emory is almost negligible in

comparison to overall system memory today.

Applications will be most sensitive to run-timedases where the entire fine-grained data set is
being processed. This is most likely to be thesaalsen element numbering is permuted from
one system to another. For this reason, the patmnotfunctionality discussed in Section 3.2
uses index arrays for both reverse and forward p&tons. The run-time complexity of
permuting based on these arrays is therefore lime#re size of the connectivity array being
permuted. Permutation requires almost no extra engnsince connectivity is permuted one
element at a time, then copied back to the origic@hnectivity array passed in by the
application.

The next most likely place where run-time mightaoeissue is in the translations between facet
connectivity and index, discussed in Section 3r2this case, for each entity/facet pair, MBCN
find the index of each facet vertex in the entitgtnectivity array, then compares that facet
index array against the connectivity arrays of $atets of the facet dimension. Although
involving traversal of several arrays in this pregethese arrays are all relatively short and are
bounded by either the maximum number of verticeanrentity (currently 8 in MBCN) or sub
facets bounding an entity (12). Furthermore, thipe of operation usually occurs as part of the
input/output process and therefore is amortized thee run-time for the whole application. For
example, a one-million element hexahedral meshgeagrated for a standard brick shape, with
six “sideset” boundary condition sets. This mesiswritten from MOAB’s representation,
based on elements and facets, to an Exodus figgdban element and facet numbers. Finding
the facet indices required only 1.6% of the oveiale to write this file. We conclude that run-
times of this sort will not be significant for magbplications.
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5. SUMMARY

This paper describes a system for numbering veraeel facets of elements in a finite-element
mesh. The system corresponds closely to the PATRAN EXODUSII numbering systems
where possible, but it also includes elements nppsrted in those systems. Numbering for both
linear and quadratic elements is described, inolydiases where only some lower dimensions
are resolved with nodes (e.g., a 10-node tetralmedomtaining refined edges but not faces).
Functions are also described for evaluating cambmombering data. These functions are used
to accomplish tasks often found in mesh applicatioMBCN provides these functions for all
supported element types, a feature that can siyngtihancements to applications to support new
element types.

The numbering system and evaluation functions desgrin this paper are implemented in the
MBCN class, which has been released as open seaftveare. Functions are also provided that
can be called directly from the Fortran and C laggps. MBCN uses static arrays to store
numbering information and adds less than 100 kBrtaapplication. In most cases, run-time
complexity is linear or less in the number of v&§ in a connectivity array.

This paper also relates our numbering system wigt bf other common systems, including
PATRAN, Exodusll, and Ansys. Functions provided\bBCN facilitate translation between the
various numbering systems. The run-time complexfy permutations is minimized by
permuting in-place for single elements using smatdtic arrays. By providing both code and
translations between various numbering systems, NiBE&cilitates interoperability between
various mesh-related applications. Interoperabiligs been shown to increase the pace of
development of scientific computing applications.
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APPENDIX A. API FOR QUERYING CANONICAL ORDERING

Given a canonical ordering specification like time an this paper, an Application Programming
Interface (API) is also useful for defining functal interfaces used to access numbering
information. Functions and enumerated types farrngg various numbering information are
described briefly in this appendix; full functioefehitions and reference information can be
found in the MBCN header file. For convenience, Al description is grouped into several
sections:

* Enumerated types and miscellaneous functions

» Basic data functions

* Evaluation functions

» Functions operating on application data

» Higher-order node functions

11



Al. ENUMERATED TYPES AND MISCELLANEOUS FUNCTIONS

MBCN references entity types using values of amemated type. A few functions also get or
set variables not specific to any entity type. Bgges and functions are summarized in .

A2. BASIC DATA FUNCTIONS

Basic data functions return numbering informatiloat tdepends only on the entity type and any
sub-entity type or index for which numbering inf@tion is being requested. This data can be
considered statically defined and is not likelb@ange in subsequent versions. The basic data
functions are summarized in .

A3. DATA EVALUATION FUNCTIONS

Data evaluation functions provide information dedvrom the static canonical numbering data,
but not necessarily stored in static tables. Thasetions may or may not be as efficient as those
in the previous section.

A4. FUNCTIONS OPERATING ON APPLICATION DATA

Canonical numbering functions are often used td fimmbering information on specific
application data. For example, given the conndgtairay for an element and a vertex number,
find the index of that vertex in the element. Thedtions in this section are based on two
important assumptions:

» The data in the connectivity array are sizeof(vpior the computer being used.

* A compare operator is defined that determines vérdtho index values represent the

same index.

If these assumptions are correct, applicationscadirthese functions, passing in connectivity
arrays as-is. Casting is used inside the implentientéo avoid dereferencing void pointers.
summarizes the MBCN functions that operate on apptin data.

AS5. FUNCTIONS INVOLVING HIGHER-ORDER NODES

The indices of higher-order nodes in an elemenedémlynamically on the other higher-order
nodes defined for the element. If one stipulates ifrany subentities of a given dimension are
resolved with high-order nodes, then all must beides for higher-order nodes can be computed
with little additional information. The functionsimimarized in provide indexing information for
entities with higher-order nodes.

APPENDIX B. MAPPINGS FROM OTHER SYSTEMS

Various well-known canonical numbering systemsused in the community, for example,
PATRAN, Exodusll, and STEP. To our knowledge tkishie first attempt to publicly document
and compare these numbering systems. In genechl neembering system is the result of having
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to support legacy applications as well as achiesmme sort of consistency; often these goals
are competing. In most cases there is no cleat™b&g/ to construct this numbering. In such
situations, it is most useful to simply understaogv each numbering system differs from the
others.

The point of comparison used in this section isrlabering system defined in Section 2.

B1. EXODUSII [SCH92]:

TET:

» Face-resolving higher order nodes appear in theexdivity list in the order f1, f2, 4, {3,
after any edge-resolving nodes and before a tetviag node.

HEX:

* Inthe 27-node hex (i.e. a hex with all dimensioesolved with higher-order nodes), the
hex-resolving node appears before the face-regphadles. That is, nodes appear in the
order (v1-v8, el-el2, hl, f1-f6).

B2. PATRAN [PATO8]:

TET:

» Edge numbering begins with base edges in ordelistens with vertices, then proceeds
to side edges in order consistent with edge ordextound base face.

* Face numbering begins with base face, then prodeeside faces in order consistent
with base edges.

* Base face has inward normal; others have outwantalo

» Higher-order node numbering is consistent with enlgmbering, but higher-order node
indices for face-resolving nodes are ordered fA{32f1.

* In PATRAN these are named “WEDGE.”

» Edge numbering begins with base edges, proceeditoptand then side edges.
» Face ordering is consistent with edge ordering.

» Base face has inward normal; others have outwamtialo

» Higher-order node numbering is not consistent withe ordering.

PYRAMID

* PATRAN has no pyramid element.

13



HEX:

Face ordering begins with base and top faces,libisrside faces in consecutive order
around the first face.

Edge ordering is consistent with face ordering.

Base face has inward normal; others have outwantado

Higher-order node ordering is not consistent witheenumbering.

B3. STEP 10303-104

TET
* Face numbering begins with the base face, proogediside faces in order consistent
with edge ordering around the base face.
» Higher-order node numbering is inconsistent witgeedrdering, beginning with side
edges and proceeding to the base edges.
PRISM
» STEP 10303-104 refers to this element as a “wedge.”
» Edge numbering begins with base edges, followetthé&yop edges, followed by side
edges; base, top, and side edge ordering is censgith vertex numbering on base face.
» Face ordering is consistent with edge ordering.
» Higher-order node numbering begins with side edgkmodes, then base and top edge
mid-nodes; it is inconsistent with edge and fackedng.
PYRAMID
» Face ordering begins with the base face with oudtwarmal, then proceeds to side faces
in order consistent with edge ordering on the liase.
» Higher-order node numbering begins with side edies) proceeds to the base edges; it
is inconsistent with edge and face numbering.
HEX

Edge ordering begins with the base edges, therepdscto top and then side edges.
Face ordering begins with base and top faces,ghmreeds to side faces, in order to be
consistent with edge ordering around the base face.

Higher-order node numbering begins with side edipes) proceeds to base and top
edges, then to faces in similar order; it is incstesit with edge and face numbering.
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B4. OTHER FORMATS

This section contains general comments about thgatbilities or incompatibilities of other
numbering systems used in the finite-element conityiun

Fluent/Gambit

» Vertex and face numberings on two-dimensional etemllow a left-hand rule.

* Vertex and edge numbering is consistent with PATRANsome 3D elements, not for
others (generally, hex elements have unique numdperi

» Higher-order nodes are interleaved with corner sddehigher-order elements, rather
than appearing after all corner nodes.

* Vertex and apparent edge numberings are simildra®e in PATRAN.
» Face numbering generally goes bottom-side-top, msidifferent from most others.
» Higher-order node numbering follows edge and fagalrering.

* PRISM and PYRAMID elements seem to be supported wsihg degenerate hex
elements.

Abaqus

» Vertex, apparent edge and face numberings sinailirdse in PATRAN.
» Higher-order node numbering follows edge/face nuimige

APPENDIX C. MBCN IMPLEMENTATION

MBCN can be divided into two parts: fundamentalardoal numbering data for the supported
element types, and functions for evaluating thasa tb provide higher-level capability (like that
described in the previous section). The challengemplementing a canonical ordering system is
not in the basic implementation; rather, it is mirgy the implementation in a way that reduces
the possibility of consistency errors and simpdifiadding new element types. The MBCN
implementation meets both these goals, possibtheaexpense of code clarity. Therefore, we
describe the implementation of the fundamental cmab ordering data here (implementation of
the higher-level functions is relatively straighté@rd and is not described here).

C1l. FUNDAMENTAL DATA

Canonical numbering can be thought of as the ozlatietween the vertices describindda
dimensional element and those formingditdimensional bounding facet8,< d < D. Working
in that paradigm, we store canonical numbering ohaga arraynConnecti vityMap[t][j ]
of ConnMap structures, whefet = MBVERTEX. . MBMAXTYPE- 1, andj = 0..2 {=0 for edge
facets,j=1 for face facets, ang2 for the element itself). The following data atered in the
nmConnecti vityMap[t][]j] corresponding to element typand facet dimensiof1:

 int topo_di nension:d, the topological dimension of element tytpe
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e int numsub_el enents: number of facets of dimensigal (j=0..d-2) or unity
(=d-1)

e int num.nodes_per_sub_el enent[i]: number of vertices contained in facet
of dimensionj+1 (j=0..d-2) or number of corner vertices in elements of tygpg=d-1,
i=0)

 MBEntityType target_type[i]: element type of facet (j=0..d-2) or element
typet (j=d-1, i=0)

« int conn[i][]: connectivity of facet, in terms of vertex indices in element type
(j=0..d-2), or indices Onum nodes_per _sub_el enent [ 0] (j=d-1)

Note that facet information is not needed for faadtdimension zero (i.e., vertices) and that the
ConnMap structures for a given tygenConnecti vityMap[t][], have a small amount of
redundant data, for convenience.

Using the data stored mConnecti vi t yMap as described above, one can read many of the
basic canonical numbering data right from the taloleexample, the following.

= Topological dimension of elements of type
t =nConnectivityMap[t][O].topo_di nensi on

= Number of (corner) vertices for element type
nConnectivityMap[t][nConnectivityMap[t][O]]..
num sub_el enent s

= Number of facets of dimensiahfor element typé =
nConnectivityMap[t][d-1].num sub_el enents

These functions and others are implemented aseirflimctions that simply reference the
appropriate items inConnect i vi t yMap.

C2. UPWARD ADJACENCY SUPPORT

As described in the preceding section, the Adjétides function can be used to find facet
indices adjacent to a given set of facets. Thisction can also perform both intersections and
unions of facet indices for a given set of soutaeefs. To support this function, MBCN also
defines a parallel table of adjacency informationthe variablemUJpConnMap. Whereas
nConnectivityMap[t][]j] stores data pertaining to facets btdwer dimension j,
mUpConnMap[t][]][ k] stores adjacency data pertaining to source amg@ttaimension$
and k, respectively, j < k.  The facet connectivity data stored in
nConnectivityMap[t][j].conn[j][] is stored in canonical numbering order of the
facet, while the adjacent facet indices storedripConnMap are sorted by index value; this
approach facilitates intersection and union openatsupported by the AdjacentSides function.

For a more detailed discussion of this issue, Sa&JD4].
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C3. EXTENDING MBCN

Extending MBCN would be accomplished by adding data new element type to the
nConnect i vi t yMap andnmJpConnMap static arrays (along with the new element type
itself). Since the other functions in MBCN are iempented based on those arrays, they would
account for the new element type automatically.
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Table 1: Enumerated types and miscellaneous functions

Type/Function Name | Description

MBEntityType Enumerated type whose values are typesgnized by MBCN.
operator++ Pre- and post-fix operators.

GetBasis Get the basis of the numbering system.

SetBasis Set the basis of the numbering system.

Table 2: Basic data functions

Function Name Description

EntityTypeName Human-readable name of an entitg.typ

Dimension Topological dimension of entity type.

VerticesPerEntity Return the number of (corner}iges contained in the specified type.

NumSubEntities Return the number of subentitiethefspecified dimension bounding
the entity.

SubEntityType Return the type of a particular stibgn

SubEntityConn Return the connectivity of the spedisubentity.

Table 3: Data evaluation functions

Function Name Description

AdjacentSides For a specified set of facets ofrgienension, return the intersectign
or union of all facets of specified target dimensamljacent to those
facets.

Table 4: Functions operating on application data

Function Name Description

SideNumber Return the facet index representedeimntbut subentity connectivity
in the input parent entity connectivity array.

ConnectivityMatch Given two connectivity arraystetenine whether or not they represent
the same entity.
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Table 5: Functions involving higher-order nodes

Function Name

Description

!

HasMidEdgeNodes Return whether an entity type hdsehge nodes for the specified
total number of nodes.

HasMidFaceNodes Return whether an entity type hdgaoe nodes for the specified
total number of nodes.

HasMidRegionNodes Return whether an entity typenhidsvolume nodes for the specifieg
total number of nodes.

HasMidNodes Return whether an entity type has s on edges, faces, and

regions for the specified total number of nodes.

HONodelndex

For an entity with specified type andber of vertices (corner +
higher-order) and a specified subfacet dimensiehidex, return the
expected index of the higher-order node resolvirag éntity.

HONodeParent

For an entity with specified type @@dex array (corner + higher-
order) and a specified node, return the dimensnohiradex of the

parent subentity resolved by that node.
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